
University of Amsterdam

System and Network Engineering

Offensive Technologies

Looking back at Grsecurity

Authors:
Eddie Bijnen, student

Mike Berkelaar, student

June 1, 2014

1

Abstract

Grsecurity is collection of kernel modifications that aim to
improve the security of the Linux operating system. The ap-
proach of Grsecurity is to take out entire classes of exploits.
This is done by modifying the kernel to make each of the meth-
ods of attack impossible. Because of this approach a level of
zero-day protection is claimed.

In this report we investigate these claims. We have gathered
an array of potentially system compromising exploits that have
been discovered in a five year time frame. Each of these ex-
ploits are tested on a vulnerable system that has yet to receive
a fix for the exploit, simulating a zero-day attack. We found
that Grsecurity offers considerable enhancements in the field of
kernel security and that from a historical point of view a lot of
zero-day exploits are indeed mitigated.

2

Contents

1 Introduction 4
1.1 Approach . 4
1.2 Related work . 4

2 Research question 4

3 Background 5
3.1 Role-based access control . 5
3.2 PaX . 5
3.3 Chroot restrictions . 5
3.4 Miscellaneous . 6
3.5 Security profiles . 7

4 Methodology 9
4.1 Test setup . 9
4.2 Kernel exploits . 10

5 Results 11
5.1 Blocked exploits . 11
5.2 Successful exploits . 13
5.3 Results by security level . 14

6 Conclusion 15

7 Future work 16
7.1 Testing of userspace exploits . 16
7.2 Revisit in time . 16
7.3 Usability review . 16

A Definitions 18

B Kernel repository 18

List of Tables

1 Chroot modules . 6
2 Grsecurity modules . 8
3 Kernel & Grsecurity version . 9
4 Exploits . 10
5 Kernel sources . 18

3

1 Introduction

Grsecurity is a security enhancement of the Linux kernel that is not included
by default. It tries to mitigate exploits that utilize low-level vulnerabilities that
are present in the Linux kernel or running software. It’s approach is to pre-
vent exploits from being successful, instead of solving the bug after becoming
aware of the exploit, a certain level of zero-day resilience is claimed.[4] Although
Grsecurity is a well respected security project, we found it is rarely used or im-
plemented by the popular Linux distributions of today.
Measuring the performance of Grsecurity against currently unknown exploits
and attacks is not possible. It is however possible to measure the effectiveness
of the features of Grsecurity against exploits that were unknown at the time of
historical Grsecurity releases.

1.1 Approach

To evaluate the claims of Grsecurity to protect against zero day exploits we will
create a system with the state of 5 years ago, containing a substantial amount
of exploits publicly known today. By testing a set of exploits on a system that
is protected by Grsecurity and a system without we can compare the results
and measure the effectiveness of the protection offered by Grsecurity. This
benchmark can be used to make an approximation of the effectiveness of the
current version against 0-day exploits.

1.2 Related work

Previous research that has been done into the the effectiveness of Grsecurity have
mainly taken theoretical approaches to verify and compare the implemented se-
curity. The Case Study Comparing Linux Security Kernel Enhancements [3] has
verified the theoretical security. A comparison between Grsecurity and SElinux
was performed, including the performance impact, although these results are
severely dated (2003) and might not cover the development of Grsecurity of the
past 5 years.

2 Research question

This paper will focus on the following research question:

• How effective is Grsecurity against zero-day exploits?

With the following sub-question we try to find potential improvements or
points of attention:

• What is the reason for possible remaining vulnerabilities?

4

3 Background

Grsecurity is a collection of kernel modifications that aim to improve the security
of the Linux kernel. The modifications can be roughly divided into 4 subsections;
PaX, role-based access control, chroot restrictions and miscellaneous protections
without a clear category.[5] Each sections helps to protect the system by limiting
the access to resources within its scope.

3.1 Role-based access control

Grsecurity’s role-based access control offers the ability to limit the available
resources per program to the absolute minimum. If a process gets compromised
the attacker will only have access to the resources that are necessary for the
process to run. This will leave access to system controls separated from the
compromised resource. The attacker will be required to use a separate exploit
to gain access to additional system resources.[5]

3.2 PaX

PaX is a kernel modification that tags memory into two categories: non-writable
executable program memory and non-executable data memory. In addition PaX
applies address space layout randomization (ASLR), introducing randomness
into the address space of processes and the kernel. The implementation of
ASLR with a x86 PaX hardened kernel adds roughly 24 bits of entropy to the
address space on every start of a process and the kernel, while only recent Linux
kernels provide 12 bits in selected areas. [10]

By setting memory to either non-writable for programme code, or non-executable
for data code, buffer overflows become far less potent. Programme code can not
be injected into from another process and any buffer overflow in the data sec-
tion will not be executed by an process outside the original. This, coupled with
randomization of memory locations, makes exploiting through vulnerabilities in
memory management far more difficult.

3.3 Chroot restrictions

Chroot is a technique that is used to change the root directory for a specific
process to a custom directory. Originally not intended for security purpose it
has little protection and is relatively easily broken out of. Grsecurity aims to
lockdown the chroot to ensure that processes that run inside do not gain access
to original system. [5] This is reached by by not allowing the commands in table
1 from inside the chroot to the original system.

5

No shared memory outside of chroot No kill outside of chroot
No ptrace outside of chroot No capget outside of chroot
No setpgid outside of chroot No getpgid outside of chroot
No getsid outside of chroot No sending of signals by fcntl
No sysctl writes No mounting or remounting
No pivot root No double chroot
No fchdir out of chroot Enforced chdir(”/”) upon chroot
No (f)chmod +s No mknod
No raising of scheduler priority Removal of harmful privileges via cap
No connecting to abstract unix No viewing of any process outside
domain sockets outside of chroot of chroot, even if /proc is mounted

Table 1: Chroot modules

3.4 Miscellaneous

Besides the three major components Grsecurity also sets up various additional
security measures like removing attack vectors and responding to behavior that
may hint on malicious activity. These measures aim to lock down system re-
sources that should rarely be required with normal use. The following list gath-
ers the miscellaneous protections as per [5], each preventing a possible attack
or weakness in the Linux system.

• FIFO restrictions

• Dmesg(8) restriction

• GID-based socket restrictions

• Automatic deterrence of exploit brute-forcing

• Tunable flood-time and burst for logging

• Enhanced implementation of Trusted Path Execution

• Symlink/hardlink restrictions to prevent /tmp races

• Nearly all options are sysctl-tunable, with a locking mechanism

• /proc restrictions that don’t leak information about process owners

• Detection of local connections: copies attacker’s IP address to the other
task

• All alerts and audits support a feature that logs the IP address of the
attacker with the log

• Stream connections across unix domain sockets carry the attacker’s IP
address with them (on 2.4 only)

6

3.5 Security profiles

Configuring Grsecurity can be a complicated task without explicit knowledge of
the certain protections Grsecurity offers and what consequences they may have
in the form of false-positives. There are more than a dozen options to enable
and disable specific protection modules. To help simplify this task there are
three predefined security profiles that can be used at build-time of the hardened
kernel: Low, Medium and High.[5] These profiles come with a preset of enabled
modules, starting with the least intrusive and becoming more secure. A higher
security profile leads to better security. However, it also leads to less software
compatibility and potentially lower performance. The different security levels
and their configurations are ordered in table 2 in order to map the security
offered by the presets provided.

We can derive from the table that the Low preset only offers the most basic
functionalities that Grsecurity has in the area of resource starvation and denial
of service prevention. The Medium preset adds Chroot protections and basic
memory security features like ASLR. Only High has the most advanced mem-
ory security features enabled like execution prevention of writable memory and
memory regions outside of the kernel’s memory space.

7

Modules Low Medium High

GRKERNSEC DMESG X X X
GRKERNSEC EXECVE X X X
GRKERNSEC FIFO X X X
GRKERNSEC LINK X X X
GRKERNSEC MODSTOP X X X
GRKERNSEC RANDNET X X X
GRKERNSEC CHROOT CHDIR X X X
GRKERNSEC CHROOT X X
GRKERNSEC CHROOT DOUBLE X X
GRKERNSEC CHROOT MKNOD X X
GRKERNSEC CHROOT MOUNT X X
GRKERNSEC CHROOT PIVOT X X
GRKERNSEC CHROOT SYSCTL X X
GRKERNSEC CHROOT UNIX X X
GRKERNSEC FORKFAIL X X
GRKERNSEC PROC X X
GRKERNSEC PROC MEMMAP X X
GRKERNSEC PROC USERGROUP X X
GRKERNSEC SIGNAL X X
GRKERNSEC TIME X X
PAX X X
PAX ASLR X X
PAX EI PAX X X
PAX HAVE ACL FLAGS X X
PAX PT PAX FLAGS X X
PAX RANDMMAP X X
PAX RANDUSTACK X X
PAX REFCOUNT X X
GRKERNSEC AUDIT MOUNT X
GRKERNSEC BRUTE X
GRKERNSEC CHROOT CAPS X
GRKERNSEC CHROOT CHMOD X
GRKERNSEC CHROOT FCHDIR X
GRKERNSEC CHROOT FINDTASK X
GRKERNSEC CHROOT NICE X
GRKERNSEC CHROOT SHMAT X
GRKERNSEC HIDESYM X
GRKERNSEC KMEM X
GRKERNSEC PROC ADD X
GRKERNSEC RESLOG X
PAX DLRESOLVE X
PAX ETEXECRELOCS X
PAX EMUPLT X
PAX EMUTRAMP X
PAX KERNEXEC X
PAX MEMORY UDEREF X
PAX MPROTECT X
PAX NOEXEC X
PAX PAGEEXEC X
PAX RANDKSTACK X
PAX SEGMEXEC X
PAX SYSCALL X

Table 2: Grsecurity modules

8

4 Methodology

The researchers have chosen to take a hands on approach to verify the claims
of Grsecurity and to see if the theoretical security keeps up in practice. To
achieve this we have created a subset of virtual machines with known vulnera-
bilities. The Debian Lenny (5.0.1) release was selected as the target machine as
it contains reasonably recent, yet out-of-date, software. To test the vulnerabil-
ities we will utilize exploit concepts that have been published to target certain
vulnerabilities as detailed in corresponding CVEs (Common Vulnerabilities and
Exposures), a database that gathers publicly known security vulnerabilities for
various types of software. For this research it was decided to focus mainly on
exploits that target the processes of the Linux kernel, as this is often the last
vector to a full system compromise.

4.1 Test setup

The researchers have created an virtual machine that has sixteen different kernel
options to boot from. Eight different version versions of the Linux kernel (x86)
with and without Grsecurity enabled as shown in table 3. These versions have
been carefully selected to cover the most amount of publicly available exploits,
as discussed in section 4.2.

Each Grsecurity kernel has been compiled with the Debian kernel configura-
tion and High Grsecurity profile, containing all the modules as shown in table
2. We have chosen to implement the highest level of Grsecurity to confirm the
performance of all security features and that an exploit has possibly bypassed
all of the security modules that Grsecurity offers. The different kernel version
are required to cover vulnerabilities and proof-of-concept exploits only available
in certain releases, while every kernel has a specific corresponding Grsecurity
version.

Special attention for the configuration at build-time of the kernels that uti-
lize the Grsecurity version 2.1.12 was required as some of the memory execution
prevention features fail to be enabled by the configuration scripts. Only man-
ual configuration of these items result in the High profile fully being enabled,
although this exception only applied to version 2.1.12 in our testing.

The sources of the kernels used for testing can be retrieved from the reposi-
tory. [2]

Linux kernel version Grsecurity version Kernel release
3.5.0 2.9.1 30 September, 2012
2.6.37.1 2.2.1 4 January, 2011
2.6.35.5 2.2.1 1 August, 2010
2.6.32.13 2.1.14 3 December, 2009
2.6.30.8 2.1.14 9 June, 2009
2.6.28.1 2.1.12 25 December, 2008
2.6.27.11 2.1.12 9 October, 2008
2.6.26 2.1.12 13 July, 2008

Table 3: Kernel & Grsecurity version

9

4.2 Kernel exploits

Based on the records of published CVEs [1] we filtered the vulnerabilities for
Linux kernels from version 2.6.26 onwards with a corresponding malicious or
proof-of-concept exploit. We gathered all available kernel exploits and found
that the Exploit-db [7] repository is easily searched with the previously found
CVE IDs.

The exploits that were verified to work on unprotected kernels are collected
in table 4. Based on the requirements of the verified exploits we selected the
best corresponding kernel versions to be hardened and tested, as previously dis-
cussed in section 4.1.

The kernel exploits collected all target a privilege escalation in some form
or way, omitting exploits that merely try to cause a denial of service attack
without resulting in a system compromise. We observed that most of the kernel
exploits found can be grouped in a number of distinct exploit types. The most
exploits use a form of memory corruption like a memory overflow [9] or NULL
pointer dereference [8]. In a number of cases we found that an exploit misuses
weak kernel processes in the form of process hijacking [6].

The sourcecode for all exploits can be found at both the Exploit-db and
CVEdetails sources with the corresponding IDs found in table 4.

ExploitDB id CVE # Type Exploit publish date

CVE: 2009-1186 EDB-ID: 8478 Memory overflow 2009-04-20
CVE: 2009-1337 EDB-ID: 8369 Process hijacking 2009-04-08
CVE: 2009-1897 EDB-ID: 9191 NULL pointer dereference 2009-07-17
CVE: 2009-2692 EDB-ID: 9435 NULL pointer dereference 2009-08-14
CVE: 2009-2695 EDB-ID: 9545 NULL pointer dereference 2009-08-31
CVE: 2009-3547 EDB-ID: 9844 NULL pointer dereference 2009-11-05
CVE: 2010-2959 EDB-ID: 14814 Memory overflow 2010-08-27
CVE: 2010-3437 EDB-ID: 15150 Memory overflow 2010-09-29
CVE: 2010-4258 EDB-ID: 15704 NULL pointer dereference 2010-12-07
CVE: 2013-1763 EDB-ID: 33336 Memory overflow 2013-02-24
CVE: 2013-1959 EDB-ID: 25450 Process hijacking 2013-05-14

Table 4: Exploits

10

5 Results

The exploits from table 4 were performed on the hardened kernels to determine
if and how Grsecurity handles the prevention of the attack. In cases where the
exploit was no longer successful but without a clear mention of the attempt in
logfiles we made reasonable assumptions on which security modules were likely
to have protected the specific vulnerability.

5.1 Blocked exploits

With the previously discussed exploits we set to test these on the potentially
vulnerable system with Grsecurity installed. The following exploits were tested
to be blocked by Grsecurity.

5.1.1 CVE: 2009-2695 - NULL pointer dereference

A problem with the handling of the mmap min addr setting by SELinux allowed
for a NULL pointer dereference attack, placing malicious instructions in a low
memory region by an application. This memory region is eventually executed
by the kernel and enables root privilege escalation.
During our tests the first protection that triggered was the prevention of auto-
matic kernel module loading. However, kernels patched with Grsecurity versions
before 2.1.14 did allow for further exploiting because certain features were not
enabled during kernel build-time. In particular the KERNEXEC security op-
tion, normally protecting against execution of injected instructions in kernel
space, is of importance to this exploit.

The reason that earlier versions of Grsecurity fail to enable these security
features is because of configuration conditions that are more strict in comparison
to version from 2.1.14 onwards. We were unable to force kernel compilation with
the KERNEXEC feature enabled, leaving us without clear results of this exploit
on the 2.6.26, -27 and -28 kernels.

5.1.2 CVE: 2009-2692 - NULL pointer dereference

A vulnerability in the socket handling of kernels up to version 2.6.30 allows a
NULL pointer dereference, similar to the exploit explained with CVE-2009-2695.
Although the exploit succeeds on the kernels without KERNEXEC protection,
Grsecurity 2.1.14 however does stop the execution of this exploit before the
malicious instructions are executed by the kernel.

5.1.3 CVE: 2009-1897 - NULL pointer dereference

A vulnerability in the /dev/net/tun device of the 2.6.30 and 2.6.31 kernels allows
for exploiting with a NULL pointer dereference. Through the tun device the
NULL address is set and for this particular implementation Pulseaudio is lever-
aged to further load the malicious instructions. Grsecurity’s PAX NOEXEC
feature is able to prevent and detect the execution of the NULL address and
therefore terminates the exploiting process.

11

5.1.4 CVE: 2010-4258 - NULL pointer dereference

A vulnerability allows this exploit to write directly to the kernel memory, al-
though it requires another exploit to trigger this memory address. The exploit
used for this trigger targets the Econet kernel module to execute the previous
instructions from the kernel memory space. Grsecurity has a number of pro-
tections that prevent this exploit from being successful. The kernel symbols
normally found in /proc/kallsyms are not accessible, making it hard for the
exploit to target a specific memory location. Predetermined memory locations
wouldn’t work as the kernel’s address space is randomized through ASLR. It
also blocks the automatic loading of kernel modules required for the Econet
exploit with the MODHARDEN feature. Although not verified, we believe that
the NOEXEC memory features of Grsecurity would prevent the execution of
this memory region in case the memory regions would be known by the exploit
and the Econet kernel module would already be loaded.

5.1.5 CVE: 2013-1763 - Memory overflow

Kernels up to version 3.7 had a vulnerability that allowed processes to receive
root privileges through crafted arrays sent to the sock diag function. The hard-
ened kernel prevents this exploit because it restricts the kernel to not execute
the crafted payload.

5.1.6 CVE: 2010-2959 - Memory overflow

The Controller Area Network (CAN) is targeted to perform an integer overflow
attack, although it is likely that the CAN kernel module is yet to be loaded.
The automatic loading of this module is blocked by the MODHARDEN fea-
ture, preventing this exploit unless this module was already loaded beforehand.
Grsecurity would also stop the kernel from executing the prepared instructions
from userspace in case the CAN module could’ve been exploited.

5.1.7 CVE: 2009-3547 - NULL pointer dereference

The pipe function in the kernel is exploited to trigger a NULL pointer derefer-
ence. The kernel tested was patched with Grsecurity 2.1.14, correctly enabling
the KERNEXEC feature in our test-setup. The execution of this specific exploit
is stopped because it highly depends on hard coded variables like memory loca-
tions that are harder to obtain or brute-force in a Grsecurity hardened situation
thanks to ASLR. Further prevention would likely come from the memory pro-
tection features of Grsecurity that would detect execution of writable memory
from a userspace memory region.

12

5.1.8 CVE: 2013-1959 - Process hijacking

This exploit gains higher privileges by manipulating the ’uid map’ and ’gid map’
files located in the /proc filesystem. Grsecurity masks the information normally
obtainable from /proc from all processes but itself, rendering this exploit un-
successful as the vulnerability is actually no longer present.

5.1.9 CVE: 2010-3437 - Memory overflow

A vulnerability in kernels before version 2.6.36 allowed for memory leaks, dis-
closing memory contents from chosen addresses. The exploit targets a kernel
function and crafts the input for this function. Because the kernel symbols are
shielded from userspace the exploit is prevented from directly targeting the weak
function. Also, the memory randomization would result in wrong or no data to
be returned, rendering this exploit unuseful.

5.2 Successful exploits

Grsecurity failed at preventing a number of exploits with the High security level.
These exploits were looked at closely to determine if the vulnerability was out of
scope or if different security modules would have been available with a custom
Grsecurity configuration.

5.2.1 CVE: 2009-1337 - Process hijacking

A shell binary is created by an unprivileged user which is modified to be owned
by the root user with this exploit. The exploit sets ownership flags by letting
a root parent process carefully execute these instructions in a predefined order.
Grsecurity seems unable to detect the misuse of this bug in kernels up to version
2.6.29.

5.2.2 CVE: 2009-1186 - Memory overflow

This exploit abuses the Udev daemon, responsible for the handling of attached
devices, and the communication channel with the kernel. The exploit instructs
the Udev daemon from an unprivileged account to execute a previously pre-
pared shell. As the Udev daemon is actually a kernel process this results in a
successful privilege escalation. The exploit heavily relies upon the creation of
a socket that communicates with the Udev daemon and a vulnerability in the
daemon itself that allows for the execution of instructions of any unprivileged
user by the kernel.
Grsecurity has no security measures to prevent the Udev daemon from exe-
cuting these instructions. However, a possibility would be to restrict unprivi-
leged users from setting up these sockets by using Grsecurity’s custom ’GRK-
ERNSEC SOCKET’ feature, although this would require more administration
of policies.

13

5.3 Results by security level

By comparing the blocking module for each exploit with Grsecurity profiles we
can correlate the effectiveness of each profile. We found that most of the ex-
ploits tested in section 5.1 were blocked by memory execution protections like
KERNEXEC and NOEXEC, which are only found in hardened kernels config-
ured with the High security level. From this we can derive that a lot of the
features found in the Medium and Low security levels, as found in table 2, fail
to protect against common kernel exploits as the memory execution would be
the final step in performing an exploit.

0 2 4 6 8 10

Low

Medium

High

Total exploits

0

2

9

11

Blocked exploits

14

6 Conclusion

The results show that Grsecurity offers an improvement in security. Nearly all
exploits could be mitigated and a case can be made for those that were not.
Grsecurity locked down the kernel however, it does not secure all processes that
have root privileges on the same level. Installing Grsecurity increases the diffi-
culty of a complete compromise and does provide a level of zero-day protection
as claimed. Although unable to stop all attacks we feel that Grsecurity most
certainly has a place in securing systems that run in an environment where there
is unpriviliged access or potentially vulnerable software running with public ac-
cess.

When using Grsecurity it is wise to take a close look into the build con-
figuration. The installation menu makes it easier to setup Grsecurity but also
abstracts away some of the details. This may lead to less modules installed than
expected, like found with some of the kernel builds during our tests detailed in
4.1, lowering the security offered by Grsecurity.

15

7 Future work

During the research done into Grsecurity the following subjects and interesting
avenues for future research arose. These subjects might be interesting to further
explore:

7.1 Testing of userspace exploits

This research has focused solely on kernel exploits and has not taken applications
vulnerabilities in consideration due to time constraints. Future research could
be done on the effectiveness of published exploits on normal userspace software
on Grsecurity hardened systems.

7.2 Revisit in time

The landscape of security and exploits is dynamic. The research that has been
done has relied on software and exploits that are between 3 and 5 years old as of
writing the paper. The landscape may change in the future making the results
of this paper obsolete.

7.3 Usability review

The Grsecurity documentation and literature available warns that high security
settings may result in an increasing amount of false positives and non-working
software. We feel it would be worthwhile to see which applications are less
forgiving in securely configured Grsecurity deployments and what the reason
and workarounds would be for that.

16

References

[1] CVE Details. CVEDetails.com - Security vulnerability datasource. 2014.

[2] M. Berkelaar E. Bijnen. Hardened kernel sources (Github repository). 2014.

[3] Michael Fox et al. SELinux and grsecurity: A Case Study Comparing Linux
Security Kernel Enhancements.

[4] Grsecurity. Grsecurity homepage. 2014.

[5] Grsecurity.net. Grsecurity Documentation. 2014.

[6] SANS Institute. Global Information Assurance Certification Paper. 2003.

[7] Misc. Exploit-db.com exploit repository. 2014.

[8] Nelhage. Much ado about NULL: Exploiting a kernel NULL dereference.
2010.

[9] Owasp. Buffer Overflow. 2009.

[10] PaX Team. PaX ASLR. 2003.

17

Appendix

A Definitions

Kernelspace: Kernel space is made up of the memory regions strictly reserved
for the Linux kernel, present at the end in the virtual memory space of every
running process.

Userspace: Userspace refers to all memory regions of a typical application,
strictly seperated from kernelspace.

Memory overflow: Grouping of overflow vulnerabilities where a memory
buffer is written to outside of the expected boundaries. In some cases this
may result in the overflown memory segments to be executed.

NULL pointer dereference: In rare cases it may be possible to trigger the
execution of a NULL pointer, sometimes interpreted as the the very first mem-
ory region 0x00000000.

B Kernel repository

The sources of the hardened kernels along with the used configurations for the
tests performed are available on Github at: https://github.com/mikeberkelaar/
grhardened.

Linux kernel version Source folder
3.5.0 Glinux-3.5
2.6.37.1 Glinux-2.6.37.1
2.6.35.5 Glinux-2.6.35.5
2.6.32.13 Glinux-2.6.32.13
2.6.30.8 Glinux-2.6.30.8
2.6.28.1 Glinux-2.6.28.1
2.6.27.11 Glinux-2.6.27.11
2.6.26 Glinux-2.6.26

Table 5: Kernel sources

18

